86 research outputs found

    Position statement on classification of basal cell carcinomas. Part 1: unsupervised clustering of experts as a way to build an operational classification of advanced basal cell carcinoma based on pattern recognition

    Get PDF
    Background No simple classification system has emerged for 'advanced basal cell carcinomas', and more generally for all difficult-to-treat BCCs (DTT-BCCs), due to the heterogeneity of situations, TNM inappropriateness to BCCs, and different approaches of different specialists. Objective To generate an operational classification, using the unconscious ability of experts to simplify the great heterogeneity of the clinical situations into a few relevant groups, which drive their treatment decisions. Method Non-supervised independent and blinded clustering of real clinical cases of DTT-BCCs was used. Fourteen international experts from different specialties independently partitioned 199 patient cases considered 'difficult to treat' into as many clusters they want (<= 10), choosing their own criteria for partitioning. Convergences and divergences between the individual partitions were analyzed using the similarity matrix, K-mean approach, and average silhouette method. Results There was a rather consensual clustering of cases, regardless of the specialty and nationality of the experts. Mathematical analysis showed that consensus between experts was best represented by a partition of DTT-BCCs into five clusters, easily recognized a posteriori as five clear-cut patterns of clinical situations. The concept of 'locally advanced' did not appear consistent between experts. Conclusion Although convergence between experts was not granted, this experiment shows that clinicians dealing with BCCs all tend to work by a similar pattern recognition based on the overall analysis of the situation. This study thus provides the first consensual classification of DTT-BCCs. This experimental approach using mathematical analysis of independent and blinded clustering of cases by experts can probably be applied to many other situations in dermatology and oncology

    Response of wild bee diversity, abundance, and functional traits to vineyard inter-row management intensity and landscape diversity across Europe

    Get PDF
    Agricultural intensification is a major driver of wild bee decline. Vineyards may be inhabited by plant and animal species, especially when the inter-row space is vegetated with spontaneous vegetation or cover crops. Wild bees depend on floral resources and suitable nesting sites which may be found in vineyard inter-rows or in viticultural landscapes. Inter-row vegetation is managed by mulching, tillage, and/or herbicide application and results in habitat degradation when applied intensively. Here, we hypothesize that lower vegetation management intensities, higher floral resources, and landscape diversity affect wild bee diversity and abundance dependent on their functional traits. We sampled wild bees semi-quantitatively in 63 vineyards representing different vegetation management intensities across Europe in 2016. A proxy for floral resource availability was based on visual flower cover estimations. Management intensity was assessed by vegetation cover (%) twice a year per vineyard. The Shannon Landscape Diversity Index was used as a proxy for landscape diversity within a 750 m radius around each vineyard center point. Wild bee communities were clustered by country. At the country level, between 20 and 64 wild bee species were identified. Increased floral resource availability and extensive vegetation management both affected wild bee diversity and abundance in vineyards strongly positively. Increased landscape diversity had a small positive effect on wild bee diversity but compensated for the negative effect of low floral resource availability by increasing eusocial bee abundance. We conclude that wild bee diversity and abundance in vineyards is efficiently promoted by increasing floral resources and reducing vegetation management frequency. High landscape diversity further compensates for low floral resources in vineyards and increases pollinating insect abundance in viticulture landscapes.AustrianScienceFund,Grant/AwardNumber:I2044-B25;BundesministeriumfürBildungundForschung;UnitateaExecutivapentruFinantareaInvatamantuluiSuperior,aCercetarii,DezvoltariisiInovarii;MinisteriodeEconomíayCompetitividad;AgenceNationaledelaRecherchePeer Reviewe

    In vitro radiosensitivity of tumour cells and fibroblasts derived from head and neck carcinomas: mutual relationship and correlation with clinical data

    Get PDF
    The aim was to characterize the variation in the cellular in vitro radiosensitivities in squamous cell carcinomas of the head and neck, and to test for a possible correlation between different measures of radiosensitivity and the clinical and histopathological data. Cellular in vitro radiosensitivities were assessed in tumour biopsies from 71 patients using the modified Courtenay–Mills soft agar clonogenic assay combined with an immunocytochemical analysis. Radiosensitivity was quantified as the surviving fraction after a radiation dose of 2 Gy irrespective of cell type (overall SF2), or based on identification of cell type (tumour cell SF2, fibroblast SF2). Sixty-three biopsies were from primary tumours, and eight were from recurrences. Overall plating efficiency ranged from 0.005 to 1.60% with a median of 0.052%. The majority of the colonies obtained from the biopsies were fibroblast marker-positive; the proportion of tumour marker-positive colonies ranged from 1 to 88% with a median of 15%. The median overall SF2 was 0.47 (range 0.24–0.96), the median tumour cell SF2 was 0.50 (range 0.11–1.0) and the median fibroblast SF2 was 0.49 (range 0.24–1.0). Comparing data from independent experiments, the overall SF2 was significantly correlated with the SF2 of fibroblasts (2P = 0.006) but not with the tumour cell SF2. The tumour cell and fibroblast radiosensitivities measured in the same individuals were not correlated (r = 0.06, 95% CI [–0.19, 0.30]). This finding seems to preclude a strong correlation between the radiosensitivity of tumour cells and fibroblasts. Concerning the clinical characteristics, neither of the measures of tumour radiosensitivity was correlated with T- and N-category, stage, tumour size, sex and age. However, the tumour cell radiosensitivity decreased with increasing grade of histopathological differentiation (2P = 0.012). The same tendency was found in two independent analyses of the same patient material. This correlation was not significant in case of the overall SF2 or the fibroblast SF2. © 1999 Cancer Research Campaig

    In vitro study on the schedule-dependency of the interaction between pemetrexed, gemcitabine and irradiation in non-small cell lung cancer and head and neck cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on their different mechanisms of action, non-overlapping side effects and radiosensitising potential, combining the antimetabolites pemetrexed (multitargeted antifolate, MTA) and gemcitabine (2',2'-difluorodeoxycytidine, dFdC) with irradiation (RT) seems promising. This <it>in vitro </it>study, for the first time, presents the triple combination of MTA, dFdC and irradiation using various treatment schedules.</p> <p>Methods</p> <p>The cytotoxicity, radiosensitising potential and cell cycle effect of MTA were investigated in A549 (NSCLC) and CAL-27 (SCCHN) cells. Using simultaneous or sequential exposure schedules, the cytotoxicity and radiosensitising effect of 24 h MTA combined with 1 h or 24 h dFdC were analysed.</p> <p>Results</p> <p>Including a time interval between MTA exposure and irradiation seemed favourable to MTA immediately preceding or following radiotherapy. MTA induced a significant S phase accumulation that persisted for more than 8 h after drug removal. Among different MTA/dFdC combinations tested, the highest synergistic interaction was produced by 24 h MTA followed by 1 h dFdC. Combined with irradiation, this schedule showed a clear radiosensitising effect.</p> <p>Conclusions</p> <p>Results from our <it>in vitro </it>model suggest that the sequence 24 h MTA → 1 h dFdC → RT is the most rational design and would, after confirmation in an <it>in vivo </it>setting, possibly provide the greatest benefit in the clinic.</p

    Down-Regulation of EBV-LMP1 Radio-Sensitizes Nasal Pharyngeal Carcinoma Cells via NF-κB Regulated ATM Expression

    Get PDF
    BACKGROUND:The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of LMP1 expression by DNAzymes could increase radiosensitivity both in cells and in a xenograft NPC model in mice. RESULTS:In this study we explored the molecular mechanisms underlying the radiosensitization caused by the down-regulation of LMP1 in nasopharyngeal carcinoma. It was confirmed that LMP1 could up-regulate ATM expression in NPCs. Bioinformatic analysis of the ATM ptomoter region revealed three tentative binding sites for NF-κB. By using a specific inhibitor of NF-κB signaling and the dominant negative mutant of IkappaB, it was shown that the ATM expression in CNE1-LMP1 cells could be efficiently suppressed. Inhibition of LMP1 expression by the DNAzyme led to attenuation of the NF-κB DNA binding activity. We further showed that the silence of ATM expression by ATM-targeted siRNA could enhance the radiosensitivity in LMP1 positive NPC cells. CONCLUSIONS:Together, our results indicate that ATM expression can be regulated by LMP1 via the NF-κB pathways through direct promoter binding, which resulted in the change of radiosensitivity in NPCs

    Concomitant use of tamoxifen with radiotherapy enhances subcutaneous breast fibrosis in hypersensitive patients

    Get PDF
    Concomitant use of adjuvant tamoxifen (TAM) and radiation therapy (RT) is not widely accepted. We aim to assess whether this treatment is associated with an increased risk of developing subcutaneous fibrosis after conservative or radical surgery in breast cancer patients. We analysed 147 women with breast cancer treated with adjuvant RT, and who were included in the KFS 00539-9-1997/SKL 00778-2-1999 prospective study aimed at evaluating the predictive value of CD4 and CD8 T-lymphocyte apoptosis for the development of radiation-induced late effects. TAM (20 mg day(-1)) with concomitant RT was prescribed in 90 hormone receptor-positive patients. There was a statistically significant difference in terms of complication-relapse-free survival (CRFS) rates at 3 years, 48% (95% CI 37.2-57.6%) vs 66% (95% CI 49.9-78.6%) and complication-free survival (CFS) rates at 2 years, 51% (95% CI 40-61%) vs 80% (95% CI 67-89%) in the TAM and no-TAM groups, respectively. In each of these groups, the CRFS rates were significantly lower for patients with low levels of CD8 radiation-induced apoptosis, 20% (95% CI 10-31.9%), 66% (95% CI 51.1-77.6%), and 79% (95% CI 55-90.9%) for CD8 &lt;/=16, 16-24, and &gt;24%, respectively. Similar results were observed for the CFS rates. The concomitant use of TAM with RT is significantly associated with an increased incidence of grade 2 or greater subcutaneous fibrosis; therefore, caution is needed for radiosensitive patients

    Purine metabolism regulates DNA repair and therapy resistance in glioblastoma

    Get PDF
    Intratumoral genomic heterogeneity in glioblastoma (GBM) is a barrier to overcoming therapy resistance. Treatments that are effective independent of genotype are urgently needed. By correlating intracellular metabolite levels with radiation resistance across dozens of genomically-distinct models of GBM, we find that purine metabolites, especially guanylates, strongly correlate with radiation resistance. Inhibiting GTP synthesis radiosensitizes GBM cells and patient-derived neurospheres by impairing DNA repair. Likewise, administration of exogenous purine nucleosides protects sensitive GBM models from radiation by promoting DNA repair. Neither modulating pyrimidine metabolism nor purine salvage has similar effects. An FDA-approved inhibitor of GTP synthesis potentiates the effects of radiation in flank and orthotopic patient-derived xenograft models of GBM. High expression of the rate-limiting enzyme of de novo GTP synthesis is associated with shorter survival in GBM patients. These findings indicate that inhibiting purine synthesis may be a promising strategy to overcome therapy resistance in this genomically heterogeneous disease
    corecore